
Eur. Phys. J. B 12, 225–234 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We present numerical and analytical evidence for the absence of a second-order phase transition
of homogeneous electron systems into an antiferromagnetic state. Our results are based on numerical data
extending from the extreme high-density regime (rs → 0) to the extreme low-density regime (rs = 100).
The particle-particle interaction is treated within the random-phase approximation, augmented by various
types of local-field corrections. The latter turn out to be crucial for a correct description of the screening of
spin-density waves. Our results indicate the absence of a second-order transition of the three-dimensional
homogeneous electron gas, the two-dimensional homogeneous electron gas, and laterally homogeneous
electron layers, into a collinear antiferromagnetic state.

PACS. 71.10.Ca Electron gas, Fermi gas – 75.50.Ee Antiferromagnetics – 75.30.Fv Spin-density waves

1 Introduction

The interacting homogeneous electron gas is one of the
most widely studied model systems of condensed matter
physics. Its importance arises from the fact that it is si-
multaneously one of the simplest models for many-body
phenomena in extended systems, serving, thus, as a test
ground for approximations and concepts, and the basic
ingredient for the local-density approximation to density-
functional theory, the most widely used method for elec-
tronic structure calculations. In the present paper we in-
vestigate the antiferromagnetic properties of interacting
three-dimensional and two-dimensional homogeneous elec-
tron gases, and also study laterally homogeneous electron
layers.

The main motivation for this work arises from the ob-
servation that, in spite of many efforts, no conclusive proof
for either the presence or the absence of antiferromag-
netism (AFM) in the homogeneous electron gas exists to
date. Our approach to the problem is of a perturbative
nature, based on evaluating the stability criterium for an-
tiferromagnetism with a screened particle-particle interac-
tion. Screening is described within the random-phase ap-
proximation, augmented by various local-field corrections.
Any perturbative approach is subject to bias in the selec-
tion of diagrams which are taken into account at any given
density. An unbiased approach, such as a Quantum Monte
Carlo (QMC) simulation, would be of great value in finally
settling the question, and we hope that our work stim-
ulates detailed QMC investigations of antiferromagnetic
states. As long as such QMC calculations are not avail-
able, however, the results presented below are, to the best
of our knowledge, the strongest yet reported in the litera-
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ture. Furthermore, note that even in the thoroughly stud-
ied case of the phase diagram of the homogeneous electron
gas in three dimensions, very recently new phases, not ac-
counted for by the standard QMC calculations, have been
predicted theoretically [1,2]. In this situation a perturba-
tive study of the possibility of antiferromagnetic phases,
not based on QMC, can contribute to a clarification of the
actual nature of the phase diagram.

Another widely used many-body technique for which
the results of the present investigation are relevant is
density-functional theory (DFT). Recent DFT calcula-
tions for antiferromagnetic systems have encountered var-
ious difficulties [3–5]. In response, a novel DFT approach
to antiferromagnetic systems has been developed [6]. Since
the homogeneous electron gas is simultaneously the ba-
sic ingredient for the most popular approximation to con-
ventional DFT (the local-density approximation), and the
natural first test case for any novel DFT, an analysis of
its antiferromagnetic properties is clearly desirable.

Previous perturbative explorations of the possibility
of AFM phases in homogeneous electron systems were
mostly based on a series of papers by Overhauser [7–10], in
which it was proved that, within the Hartree-Fock approx-
imation, an AFM phase always has lower energy than the
paramagnetic phase. This instability towards AFM of the
homogeneous electron gas produces a spin-density wave
(SDW) similar to that observed, e.g., in chromium [11].

Overhauser further argued that the instability may
persist if certain correlations beyond Hartree-Fock are in-
cluded [10]. Several lines of attack have been pursued in
order to include such correlations: For three-dimensions
Fedders and Martin [12] and Hamann and Overhauser [13]
showed that going beyond the Hartree-Fock approxi-
mation by introducing screening into the description
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of the paramagnetic state tends to eliminate the instabil-
ity and makes antiferromagnetism unfavorable. The con-
clusion of Fedders and Martin is based on six data points
in the metallic density regime (rs = 1, 2 . . .6, where rs is
the standard density parameter), obtained using Thomas-
Fermi screening of the Hartree-Fock approximation, and
a rough estimate of the changes brought about by go-
ing beyond Thomas-Fermi screening via the random-phase
approximation (RPA). The Thomas-Fermi approximation
and the RPA, however, are not at all reliable at metallic
and low densities.

Perdew and Datta performed density-functional cal-
culations for the three-dimensional homogeneous electron
gas [14] and found evidence for a charge-density wave, but
not for AFM. Due to the necessary approximations for the
density dependence of the coefficients of the involved gra-
dients of the spin-densities, however, it is not clear if these
calculations are valid in the metallic density regime. Fur-
thermore, certain types of AFM states, such as those in
which the resulting SDW has a very short wavelength,
cannot be excluded conclusively on the basis of these
calculations.

Although the results of Fedders and Martin and of
Perdew and Datta thus indicate absence of various types
of SDW states for certain densities of the homogeneous
electron gas, they are not conclusive in the metallic den-
sity regime. They also do not extend to two-dimensional or
layered systems. Furthermore, several other, mostly per-
turbative, calculations [10,15–18] did predict AFM within
various approximations, but differ vastly in the value ob-
tained for the critical density at which AFM sets in.

In order to clarify this situation, in the present work
we reexamine and extend the work of Overhauser and
of Fedders and Martin (FM). We consider a wide range
of densities, from extremely low (rs = 100) all the way
to extremely high densities (rs → 0) and base our de-
scription of screening not on the Thomas-Fermi approx-
imation, but on the random-phase approximation, aug-
mented, in the metallic and low-density regimes, by the
inclusion of local-field corrections. We begin by consid-
ering three-dimensional electron gases and then extend
the same methodology to two-dimensional and layered
systems.

2 Three-dimensional electron gas

In the following Section 2.1 we summarize the conclusions
which emerge from a critical reexamination of the pro-
cedure and the results of Fedders and Martin. We point
out limitations of their approach and briefly report how
their treatment can be improved and what results follow
from such improvements. In Section 2.2 we then proceed
to a more reliable description of screening, based on local-
field corrections to the RPA, and search for instabilities
at metallic and lower densities.

2.1 Stability criterium for antiferromagnetism

Fedders and Martin derived the following Stoner-like cri-
terium for the stability of antiferromagnetism in the ho-
mogeneous electron gas [12]:∫
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where
f(E) =

1
1 + e(E−µ)/kBT

(2)

is the usual Fermi function with temperature T , Boltz-
man constant kB and chemical potential µ. The function
E(p) denotes the single-particle energies appearing in the
single-particle Green’s function. A solution to this integral
equation corresponds to a pole in the mzmz correlation
function, where mz is the z-component of the spin mag-
netization. (Consult Refs. [12,19,20] for a more detailed
discussion of Eq. (1)). The FM criterium (1) does neglect
non-collinear spin configurations (such as spin spirals) and
the competition and coupling between spin-density waves
and charge-density waves. It also does not apply to first-
order phase transitions, since it is based on considering
stability with respect to small fluctuations.

Within these limitations, Fedders and Martin pro-
ceeded by noting that the SDW ground state is character-
ized by the parameters ω = 0, p = 0 and q = 2kF, where
kF is the Fermi momentum [8,9]. The first two of these
parameters simply characterize the lowest energy station-
ary AFM state. The value q = 2kF reflects the nesting of
the Fermi surface, which is crucially important for the sta-
bility of antiferromagnetism both in Overhauser’s calcula-
tion and in realistic materials such as chromium [11]. The
task is thus to evaluate the integral R(0, 2kF, 0) and see
whether it ever becomes equal to −1, the point at which
the instability sets in. To this end one needs to make a
choice for the particle-particle interaction V (p) appearing
in equation (1). The simplest choice for V (p) is the bare
interaction

V0(p) =
4πe2

p2
, (3)

which corresponds to the Hartree-Fock approximation
for the two-particle Green’s function. This choice always
leads to an instability towards AFM [12], in complete ac-
cordance with Overhauser’s earlier calculations. Follow-
ing the procedure developed by Fedders and Martin, the
Hartree-Fock approximation can be improved upon by
screening the bare interaction. In the original work the
Thomas-Fermi approximation

VTF(p) =
4πe2

p2 + ξ2
TF

, (4)

where ξTF is the Thomas-Fermi screening momentum,
was employed for this purpose. Fedders and Martin then
made two further approximations in order to be able
to evaluate equation (1). The first of these consists in
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replacing the Fermi functions by step functions (i.e.,
by their zero-temperature limit). The second approxima-
tion is to replace the energies E(p), which should be
those corresponding to the approximation chosen for the
Green’s function (i.e., in the present case the Hartree-
Fock single-particle energies), by the free-particle en-
ergies E(p) = p2/(2m). On the basis of these cal-
culations FM concluded that there is no AFM in the
three-dimensional homogeneous electron gas at the metal-
lic densities rs = 1...6.

We have repeated the FM analysis for the density in-
terval rs = 1..100 and also included Fermi-liquid correc-
tions (which result in an improved description of screen-
ing as compared to the Thomas-Fermi approximation)
and exchange-corrections to the single-particle energies
(thereby undoing the second of the approximations just
mentioned). Our essential conclusions can be summarized
as follows: (i) Within the Thomas-Fermi approximation
and for rs = 1...6 we confirm the numerical results of FM.
We have also obtained an approximate analytical solution
to the FM integral equation, which agrees to within a few
percent with the numerical data in the range of high and
metallic densities. (ii) Fermi-liquid and exchange correc-
tions make the situation for AFM more unfavorable, not
less so, i.e., the criterium is violated by a larger margin if
the particle-particle interaction is treated in a more reli-
able fashion. (iii) Contrary to the expectations of FM [12],
the exchange corrections to the single-particle energies are
not negligible, but yield changes of the uncorrected val-
ues on the 10% level. Qualitatively, however, they do not
change any previous conclusion. (iv) The FM criterium
for the stability of AFM phases can be generalized to in-
clude non-collinear SDW states and the competition with
(and coupling to) charge-density wave instabilities. These
results will be discussed in more detail in a future publi-
cation [20].

2.2 Random-phase approximation and local-field
factors

In the present work we are mainly concerned with the
metallic and low-density regime, in which the Thomas-
Fermi approximation is notoriously unreliable. Although
the inclusion of Fermi-liquid and exchange corrections im-
proves this situation somewhat, a reliable treatment of
metallic and low-density systems requires a more elabo-
rate approach. Fedders and Martin already indicated a
possible direction for further improvements, namely a de-
scription of screening based on many-body techniques,
such as the RPA. However, they limited their treatment
of the RPA to giving a rough estimate, without providing
numerical results. Furthermore the RPA, too, is unreliable
at metallic and at low densities. One can, however, extend
the validity of the RPA description of screening into the
metallic and even well into the low-density regime by in-
troducing local-field factors in the expression for the RPA
dielectric constant.

Within the RPA the potential V (p) is

VRPA(p) =
V0(p)
εRPA(p)

, (5)

where static RPA dielectric function εRPA(p) is given by

εRPA(p) = 1− 4πe2

p2
χ(p), (6)

and χ(p) is the ω = 0 limit of the Lindhard function,
i.e., the response function of the non-interacting homoge-
neous electron gas. The inclusion of local-field corrections
is accomplished via

εLFF(p) = 1− V0(p)χ(p)
1 + V0(p)G(p)χ(p)

· (7)

A large variety of approximations for the local-field fac-
tor (LFF) G(p) are available. In a first step we employed
the Hubbard form,

G(p) =
p2

2(p2 + k2
F)
, (8)

where p = |p|. The Hubbard approximation for the local-
field factor in many cases already provides substantial im-
provement over the RPA. However, a large number of al-
ternative expressions for G(p) exist, which, in particular at
low densities, improve on the Hubbard expression. Prob-
ably the simplest of these is the form [19,21]

G(p) =
p2

2(p2 + k2
F + ξ2

TF)
· (9)

More sophisticated improvements on the Hubbard ap-
proximation are contained, e.g., in the recent work of
Gold and Calmels [22,23], and of Sato, Iyetomi and
Ichimaru [18,24], where parametrizations for the local-
field correction over a wide range of densities are provided.

The parametrization of Gold and Calmels employs a
sum-rule-based version of the self-consistent approach of
Singwi, Tosi, Land and Sjölander [25], and has been shown
to be very accurate up to rs ≈ 20, reasonably accurate for
higher values of rs, and to satisfy various exact properties
of the exact local-field factor [23]. The proposed expression
for G is [23]

G(x) = r3/4
s

0.846x2

2.188C13(rs) + x2C23(rs)
, (10)

where x is a dimensionless momentum variable and
the functions C13(rs) and C23(rs) are numerically
known [23,26].

The parametrization of Sato and Ichimaru [18], on
the other hand, is specifically designed to incorporate
the second-order exchange diagram [27], which is an im-
portant non-RPA contribution to the correlation energy.
These authors provide the expression

G(x) =
(
x2

4
+ 0.0057x4

)(
0.79 + 0.21 tanh

(
4− x2

0.45

))
,

(11)
for 0 ≤ x = k/kF ≤ 2.
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Fig. 1. Value of the integral (1) for low and intermediate
(metallic) values of rs. R = −1 would indicate an instabil-
ity towards antiferromagnetism. The empty circles correspond
to simple Thomas-Fermi screening, full circles to the static
RPA, and the triangles to the RPA including local-field cor-
rections in the Hubbard form. Open squares are obtained with
equation (9). Filled squares are results from using the Sato-
Ichimaru parametrization. Diamonds, finally, correspond to the
RPA with local-field corrections in the Gold form.

The integral resulting if the bare potential, screened
by a dielectric constant including any of these four local-
field corrections, is substituted in equation (1), must be
evaluated numerically. Results are listed in Table 1 for
some representative values of the densities and, for many
more densities, plotted in Figures 1 and 2. For comparison
we have also included values obtained with Thomas-Fermi
screening and the uncorrected RPA in the table and the
figures.

Several conclusions can be drawn from these data: (i)
In agreement with the results obtained by Fedders and
Martin, Thomas-Fermi screening yields values which are
fairly close to satisfying the stability criterium, but not
close enough. (ii) RPA screening yields values which are
slightly closer to AFM than pure Thomas-Fermi screening.
This is, however, an artifact of the RPA, which is removed
by the more reliable local-field corrected approximations.
(iii) Local-field factors drastically modify the behaviour
of the integral at low and metallic densities, where they
improve most upon the RPA. This shows that previous
approximations, including in particular those of Fedders
and Martin, which were based on the RPA or on Thomas-
Fermi screening, are not reliable in the density regimes
they were applied to. (iv) Different parametrizations of
the local-field factor show considerable quantitative, but
almost no qualitative differences among each other, while
they show both quantitative and qualitative differences
with the uncorrected RPA. (v) There is no sign of anti-
ferromagnetism in the entire investigated density interval,
within any of the employed approximation schemes.

A critical assessment of the validity of the resulting
claim that there is no AFM in the three-dimensional in-
teracting electron gas at any density is postphoned until
Section 5. The next two sections are devoted to the two-
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Fig. 2. Extension of Figure 1 to high values of rs, i.e. to
low densities. The local-field correction in the Gold form (di-
amonds) is only available for rs ≤ 50. The local-field factor
of Sato and Ichimaru leads to values almost indistinguishable
from those obtained with the Hubbard approximation (trian-
gles) on this scale. Similarly, the Thomas-Fermi results and
those obtained with the local-field factor (9) are virtually in-
distinguishable from the RPA results (filled circles) on this
scale. Consequently, only results obtained with the RPA and
the approximations of Gold and Hubbard are plotted. Obvi-
ously, the RPA and the Thomas-Fermi approximation are not
only quantitatively but also qualitatively wrong at large rs,
i.e., at low densities.

dimensional electron gas and thin laterally homogeneous
electron films. In both of these systems screening is weaker
than in three dimensions, so that an instability would seem
more likely.

3 Two-dimensional electron gas

There exist two fundamentally distinct conceptions of
a two-dimensional interacting electron gas. In the first
of these the particles are considered to be constrained
to move in a plane, while the basic equations (such as
Maxwell’s and Schrödinger’s equations) retain their fa-
miliar three-dimensional form. In particular, the Coulomb
potential, resulting from the Green’s function of the three-
dimensional Laplace equation, is still given by 1/r. Such
systems will below be called quasi-two-dimensional sys-
tems. In the second conception of a two-dimensional
electron gas the entire physics is assumed to be two-
dimensional. The Coulomb potential, arising from the so-
lution to the two-dimensional Laplace equation, is then
logarithmic [28]. Strictly speaking, only the second case
deserves to be called a ‘two-dimensional electron gas’.
What is observed in nature, however, is closer to the first
case: The two-dimensional electron gases of semiconduc-
tor physics [29], electrons on liquid helium [29], or weakly
coupled layered systems, such as in the high-temperature
superconductors [30], transition metal dichalcogenides [31]
and organic conductors [32] are typical examples of quasi-
two-dimensional systems. In this paper we will exclusively
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Table 1. The values of −100R(rs) in three dimensions for some representative densities. −100R(rs) must be larger or equal
100, in order for an instability towards AFM to exist. The first row gives the density parameter, the second the results of the
Thomas-Fermi approximation for screening. The third row contains the results for q-dependent screening (the static RPA).
The fourth to seventh rows contain results including local-field corrections to the RPA. Row four is based on the form for the
local-field factor (LFF) given by Hubbard, row five on equation (9), row six employs that of Gold and Camels (which is only
available for rs ≤ 50) and row seven that of Sato and Ichimaru. As is obvious from the data in this Table, the criterium for
AFM is not satisfied in any of these approximations, for any listed density. Note that the data listed in this Table are only
representative values. A much larger number of densities is plotted in Figures 1 and 2.

rs 0.2 0.5 1 2 3 4 5 6 10 100
−100R(rs)TF 6.1 9.7 13 16 18 19 20 21 22 25
−100R(rs)RPA 6.2 9.8 13 17 19 20 21 22 24 27

−100R(rs)RPA+HLFF 6.0 9.0 11 11 8.6 5.2 1.2 −3.1 −23 −550
−100R(rs)RPA+SLFF 6.0 9.2 12 14 15 15 16 16 16 16
−100R(rs)RPA+GLFF 6.0 9.1 11 10 6.5 1.2 −5.4 −13 −48 -
−100R(rs)RPA+ILFF 6.1 9.3 12 13 11 8.9 5.8 2.1 −15 −580

deal with this type of two-dimensional systems. The two-
dimensional Fourier transform of the 1/r Coulomb poten-
tial then yields

V0(p) =
2πe2

p
· (12)

The density of the two-dimensional electron gas is deter-
mined by the density parameter rs, which is defined, in
two dimensions, according to

rs =
1

a0
√
nπ

=
1

α̃kFa0
, (13)

where n is the two-dimensional density, a0 = ~2/(me2) is
the Bohr radius, α̃ = 1/

√
2, and kF is the radius of the

Fermi circle.
Of course, the Mermin-Wagner theorem [33] excludes

the existence of long-range magnetic order in strictly two-
dimensional systems at nonzero temperature [34–40]. The
present investigation aims specifically at the zero temper-
ature case, where the Mermin-Wagner theorem does not
apply.

The Fedders and Martin criterium, equation (1), is eas-
ily adapted to the two-dimensional case. Employing planar
polar coordinates and performing one of the integrals we
find that at zero temperature

R =
α̃rs

8π2e2

[∫ 3π/2

π/2

∫ −2kF cosϕ

0

−
∫ π/2

0

∫ 2kF cosϕ

0

−
∫ 2π

3π/2

∫ 2kF cosϕ

0

]
V (k)
cosϕ

dϕdk. (14)

Within the Thomas-Fermi approximation the two-
dimensional screened potential is given by

v(k) =
2πe2

k + ξ
, (15)

where ξ = 2/a0 and a0 = ~2/(me2) is the Bohr radius. If
this potential is substituted in (14) one finds that the k

integral can be done analytically. The result is

R(rs) =
α̃rs
4π

∫ 3π/2

π/2

dϕ
log
∣∣∣1− 2kF cosϕ

ξ

∣∣∣
cosϕ

−
∫ π/2

0

dϕ
log
∣∣∣1 + 2kF cosϕ

ξ

∣∣∣
cosϕ

−
∫ 2π

3π/2

dϕ
log
∣∣∣1 + 2kF cosϕ

ξ

∣∣∣
cosϕ

 . (16)

The remaining ϕ integrals must, in general, be evaluated
numerically.

3.1 Unscreened interaction

We first consider the Hartree-Fock approximation,
i.e., no screening. For three-dimensional systems the
corresponding calculation leads to a rederivation of
Overhauser’s result that the homogeneous electron gas,
within the Hartree-Fock approximation, is unstable to-
wards AFM [12]. Since Overhauser himself proved his the-
orem only in one [8] and three [9] dimensions, it is inter-
esting to check whether the instability can also be found
in two dimensions.

In fact, the desired result follows directly from equa-
tion (16). In the limit ξ → 0 all three logarithms tend
towards positive infinity. In the second and third integral,
which are subtracted, the integration limits are such that
cosϕ is always positive. In the first integral, which en-
ters (16) with a positive sign, the limits are such that the
contribution of cosϕ is always negative. Hence, for ξ → 0
all three terms are negative and

lim
ξ→0

R(rs) = −∞ (17)

for all nonzero rs, i.e., for all finite densities. It follows
that the two-dimensional homogeneous electron gas in the
Hartree-Fock approximation is always unstable towards
AFM.
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Table 2. Values of −100R(rs) in two dimensions for a number of selected densities. −100R(rs) must be larger or equal 100 in
order to have an instability towards antiferromagnetism. As discussed in the main text, the values for Thomas-Fermi screening
and RPA screening are identical. Thus only one row of data, the second, is given for both approximations. The third and fourth
rows contain results including local-field corrections to the (static) RPA. Row three is based on the expression given by Sato
and Ichimaru, while row four employs the two-dimensional local-field parametrization of Gold and Calmels. Note that the data
listed in this Table are only representative values. A much larger number of densities is plotted in Figures 3 and 4.

rs 0.2 0.5 1 2 3 4 5 6 10 100
−100R(rs)RPA 21 30 37 42 44 45 46 47 48 50

−100R(rs)RPA+ILFF 20 25 22 3.9 −20 −47 −76 −110 −230 −3100
−100R(rs)RPA+GLFF 20 22 13 −28 −84 −150 −220 −300 −650 −13000

0 2 4 6 8 10
rs

−1

1

3

5

R

Fig. 3. Value of the integral (14) for low and intermediate val-
ues of rs. The filled circles correspond to simple Thomas-Fermi
screening and wave-vector dependent screening. Filled squares
correspond to the static RPA including two-dimensional local-
field corrections in the Ichimaru-Sato form. Diamonds corre-
spond to two-dimensional local-field corrections in the Gold-
Calmels form.

3.2 Screened interaction

In order to go beyond the Hartee-Fock approximation
we now numerically evaluate the integral (16), with the
Thomas-Fermi value for ξ, as a function of the density
parameter rs. The results are listed, for some representa-
tive densities, in the second row of Table 2 and plotted,
for many more densities, in Figures 3 and 4 (represented
by the filled circles). Obviously, the criterium R = −1
is not satisfied in the entire density interval. Qualita-
tively, this is the same result obtained in three dimensions:
Screening the interaction eliminates the antiferromagnetic
phase found in the Hartree-Fock approximation. The log-
ical next step would be the corresponding calculation for
wave-vector dependent screening. For this one needs as in-
put the RPA expression for the two-dimensional dielectric
function. However, in the range of wave vectors needed
for evaluation of equation (14), namely k ∈ (0, 2kF), the
RPA for the two-dimensional dielectric function is iden-
tical with the Thomas-Fermi expression [29,41,42]. This
result is related to the counterintuitive fact that Thomas-
Fermi screening in two dimensions is independent of the

0 20 40 60 80 100
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−10

10
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50

70

90

110

R

Fig. 4. Extension of Figure 3 to high values of rs, i.e. to low
densities. We have extended these calculations to rs = 200
without finding any qualitative change in the behaviour of the
curves. The data between rs = 100 and rs = 200 are not in-
cluded in this curve in order to keep the values obtained from
Thomas-Fermi screening (the filled circles) visible on the same
scale.

density [29]. The Thomas-Fermi data in Table 2 and Fig-
ures 3 and 4 thus already represent the values obtained
from the static RPA.

In the same way as in three dimensions one can now in-
clude local-field corrections in order to improve the results
for low densities. The screened potential then becomes

VLFF(p) =
V0(p)
εLFF(p)

· (18)

The necessary approximations for the two-dimensional di-
electric constant are obtained from

εLFF(p) = 1− 1− εRPA(p)
1 + G(p) [1− εRPA(p)]

, (19)

which follows from the definition of the local-field factor
and the RPA. The two-dimensional RPA is known from
the literature [29,41,42], and the two-dimensional local-
field factor G(p) has been parametrized by various work-
ers. In the numerical calculations based on equation (18)
we employed two such parametrizations.
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One is the sum-rule-based two-dimensional parametri-
zation of Gold and Calmels [23]. Here G takes the form

G(x) = r2/3
s

1.402x√
2.644C2

12(rs) + x2C2
22(rs)

, (20)

where the functions C12(rs) and C22(rs) are numerically
known [23,26].

The other parametrization for the two-dimensional
local-field factor used in the present work is that given by
Sato and Ichimaru [18] and further discussed by Iyetomi
and Ichimaru [24]. Their explicit expression for G is

G(x) =
(x
π

+ 0.009x4 − 0.00038x6
)

×
(

0.965 + 0.035 tanh
[

4− x2

0.078

])
, (21)

where 0 ≤ x = k/kF ≤ 2. This expression incor-
porates the second-order exchange correction [43,44],
which has been found to be crucially important in two
dimensions [18,24,43,44].

Results obtained on the basis of these two parametriza-
tions for G(q) by numerically evaluating the double inte-
gral (14) for densities ranging from rs = 0.2 to rs = 100,
are listed in the third and fourth row of Table 2 and plot-
ted in Figures 3 and 4. The different parametrizations for
G(q) are seen to differ quantitatively, in particular at low
densities, but to display the same qualitative behaviour.
The net result of these calculations is that, whatever the
approximation scheme, and at any investigated density,
the AFM stability criterium is violated.

The resulting conclusion that AFM does not exist for
two dimensional densities from rs = 0.2 to rs = 100 is
in disagreement with a result obtained by Bergman and
Rice [45]. These authors use an integral equation of the
same type as that of Fedders and Martin and solve it ap-
proximately by neglecting higher-order terms in the ir-
reducible particle-hole interaction and assuming a certain
form for the Green’s functions. They predict an AFM state
at rs ≥ 2.9 for, e.g., two-dimensional inversion layers on
Si [100] surfaces. However, as these authors themselves
point out, their result has to be viewed with caution, since
by predicting AFM in three dimensions at rs = 4.3 their
approximations contradict the conclusion of a number of
other authors [12,13,45].

In another work, Ichimaru and coworkers [18,24] found
indications for a possible instability of two-dimensional
electron systems towards SDW states at rs = 1.89. (Note
that this value is not compatible with the Bergman-Rice
estimate rs ≥ 2.9.) Their result is based on an approx-
imation to density-functional theory, with the exchange-
correlation functional expressed in terms of the local-field
factor (21). From the above it follows that we cannot con-
firm their finding. While at present we do not have an
explanation for the discrepancy between their result and
ours, we offer the following tentative remarks on this issue:
It follows from our data that although the local-field fac-
tors of Gold and Calmels, equation (20), and of Ichimaru
and coworkers, equation (21), are both unfavorable for

AFM, the latter is less so than the former. It is thus more
likely to find spurious AFM in an approximate calculation
based on equation (21). Apart from this, the discrepancy
may arise from the fact that these authors consider only
the spin-susceptibility, while the Fedders and Martin cri-
terium arises from an analysis of the full mzmz correlation
function. Alternatively, it may indicate that inclusion of
only the second-order exchange energy in the local-field
factor (21), important as it is, is not enough to guarantee
consistent results.

A detailed evaluation of the data summarized in Ta-
ble 2 and Figures 3 and 4 can be summarized as follows: (i)
Use of an unscreened interaction shows that Overhauser’s
instability persists in a two-dimensional electron gas, at
any density. (ii) This instability disappears if the interac-
tion is screened, regardless of which approximation scheme
is used for screening. (iii) The net effect of the local-field
corrections in two dimensions is essentially the same as in
three dimensions: the RPA results are drastically changed
at low densities, and the AFM criterium is even more
strongly violated than in the RPA. (iv) Comparing the
tendency towards AFM in two and three dimensions we
find that the two-dimensional electron gas violates the cri-
terium by a smaller margin than the three-dimensional one
(i.e., is less stable) at large densities, while it violates it
by a larger margin (is more stable) at low densities.

4 Laterally homogeneous thin films

Quasi-two-dimensional systems, in which the Coulomb in-
teraction retains its three-dimensional form, only roughly
approximate realistic layered systems or thin films. How-
ever, as long as their width is small compared to their
other two dimensions, such structures can be treated in
a very similar way as the quasi-two-dimensional systems.
The two-dimensional potential is simply modified accord-
ing to

V (p) =
1

ε(p)
2πe2

p
Fb(p), (22)

where ε(p) is the dielectric constant of the layer. Fb(p) is
the so called form factor and b measures the inverse width
of the layer [46]. The effective layer width is approximately
3/b. A simple analytical approximation for this form factor
is available [46,47], namely

Fb(p) =
1 + 9

8
p
b + 3

8
p2

b2(
1 + p

b

)3 · (23)

This approximation describes well the nearly two-
dimensional electron gases of semiconductor physics
[29,47,48]. The present expression for this factor is some-
what simpler than that given in the original refer-
ences because for the present purposes we do not need
to distinguish the dielectric constants of the adjacent
metal and semiconductor, as is required in semiconductor
physics [29]. It is now a simple matter to introduce this
model potential in equation (14) and perform the resulting
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Fig. 5. Antiferromagnetism criterium in a homogeneous elec-
tron layer as a function of the effective width of the layer.
Screening is treated within the static RPA including the two-
dimensional local-field correction of Gold and Calmels [23] and
the finite width is taken into account through the form factor
defined in equation (23). Squares denote data for rs = 6, tri-
angles those for rs = 3 and circles correspond to rs = 0.5.
The effective layer width is taken to be 3 Å, 30 Å, 300 Å and
3000 Å, respectively and is displayed on a logarithmic scale.
The solid lines are only guides for the eye.

double integral numerically for various approximations for
screening. Results for four different values of the effective
layer width are listed in Table 3 for the uncorrected RPA,
and in Table 4 for the RPA with the Gold-Calmels local-
field correction. The following conclusions can be drawn
from detailed analysis of these data:

(i) There is no antiferromagnetism in thin films of ho-
mogeneous electron gases for any investigated value of the
density and the effective layer width, and for any employed
approximation for the dielectric constant.

(ii) For high densities both local-field factors are in
quantitative and qualitative agreement with each other
and with the RPA. For lower densities the local-field fac-
tors still yield results which agree at least qualitatively
with each other, while, as expected, the RPA results dif-
fer drastically.

(iii) For small and intermediate densities the AFM cri-
terium is violated more strongly as the system becomes
more two dimensional. For large densities the situation is
exactly reversed, so that AFM becomes less unfavorable
for thinner layers. This behaviour is demonstrated in Fig-
ure 5, in which the value of −100R is plotted as a function
of the effective layer width for several values of the density
parameter rs. The data recorded in Table 4 and plotted in
Figure 5 were obtained on the basis of the Gold-Calmels
parametrization for the two-dimensional local-field factor.
If the Ichimaru-Sato local-field parametrization is used in-
stead of that of Gold and Calmels the quantitative de-
tails are slightly different, but the overall behaviour of the
curves remains the same.

Conclusion (iii), on the effect of two-dimensionality on
AFM, is in agreement with the findings of Section 3, which
were obtained by direct comparison of the results from the

two-dimensional calculation with those obtained in three-
dimensions. Note, however, that whereas the limit of zero
layer width of the potential (22) is the correct potential for
a two-dimensional system, the limit of infinite layer width
is not that of a three-dimensional system, because the ap-
proximations made in deriving the form factor (23) break
down in this limit. While the data obtained for thin films
should thus be reliable, as long as the effective width is not
too large, extrapolation to three dimensions, starting from
a two-dimensional potential is, evidently, not justified.

5 Loopholes

The results obtained so far seem to rule out antiferromag-
netism in the homogeneous electron gas. Overhauser’s the-
orem, obtained in the Hartree-Fock approximation, that
the homogeneous electron gas is antiferromagnetic for any
density would then be merely an artifact of the Hartree-
Fock approximation. In fact, this is not the case. There
are two loopholes in the treatment given here (and also
in most previous works on the same subject [12–14,45]).
These loopholes can be summarized under the headings of
‘first-order transitions’ (or ‘antiferromagnetically modified
screening’) and ‘non-collinearity’.

We first turn to a discussion of first-order transitions.
Overhauser already argued [10] that in order to analyze
the energetic stability of an AFM state one should take
into account that the screening itself is modified in that
state. In other words, it should be taken into account
that the nature of the correlations leading to screening
beyond Hartree-Fock depends on the presence or absence
of AFM. Of course, this effect is difficult to account for on
the basis of the models for screening discussed above. For
second-order phase transitions this is not necessary, be-
cause the order parameter for antiferromagnetism is van-
ishingly small at the critical temperature. Consequently,
a small AFM fluctuation, appearing spontaneously in the
system, will find itself in a hostile environment, dominated
by normal-state screening, and thus energetically unfavor-
able for AFM. Such fluctuations will disappear.

On the other hand, if the order parameter is finite at
the critical temperature, as is the case for first-order tran-
sitions, an AFM fluctuation can locally lead to a state with
finite order parameter and considerably modified screen-
ing. In a suitable density and temperature regime such a
fluctuation may thus stabilize itself and induce a phase
transition into an AFM state. As Fedders and Martin al-
ready pointed out [12], the normal (paramagnetic) state
would then be only metastable at those values of temper-
ature and density. Of course, this argument should not
be taken as implying that such a metastability necessarily
exists, the point to make is merely that it cannot be con-
clusively excluded on the basis of results obtained from
the stability criterium of FM.

The second loophole, associated with non-collinearity,
arises from the fact that the AFM stability criterium,
equation (1), is derived solely from the mzmz correlation
function and thus not applicable to non-collinear states,
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Table 3. Criterium for antiferromagnetism in a homogeneous electron film of finite width, evaluated within the static RPA.
The effective width of the layer varies from 3 Å to 3000 Å. The value of −100R(rs) must be larger than 100, in order for AFM
to exist. For comparison purposes we have also included, in the second row, the corresponding values from Table 2 for strictly
two-dimensional systems.

rs 0.2 0.5 1 2 3 4 5 6 10 100
−100R(rs), 2 dim 21 30 37 42 44 45 46 47 48 50
−100R(rs), 3 Å 4.8 9.2 14 21 25 28 31 33 37 48
−100R(rs), 30 Å 1.1 2.3 3.8 6.2 8.1 9.7 11 12 16 39
−100R(rs), 300 Å 0.20 0.43 0.75 1.3 1.7 2.2 2.5 2.9 4.1 17
−100R(rs), 3000 Å 0.032 0.070 0.12 0.21 0.30 0.38 0.46 0.53 0.78 4.2

Table 4. Criterium for antiferromagnetism in a homogeneous electron film of finite width, evaluated within the static RPA and
the two-dimensional local-field correction of Gold and Calmels. The effective width of the layer varies from 3 Å to 3000 Å. The
value of −100R(rs) must be larger than 100, in order for AFM to exist. For comparison purposes we have also included, in the
second row, the corresponding values from Table 2 for strictly two-dimensional systems.

rs 0.2 0.5 1 2 3 4 5 6 10 100
−100R(rs), 2 dim 20 22 13 −28 −84 −150 −220 −300 −650 −13000
−100R(rs), 3 Å 4.3 6.3 4.2 −15 −47 −90 −142 −200 −480 −12000
−100R(rs), 30 Å 0.98 1.5 1.0 −4.3 −14 −29 −47 −67 −186 −9111
−100R(rs), 300 Å 0.18 0.28 0.19 −0.88 −3.0 −6.0 −10 −15 −42 −3200
−100R(rs), 3000 Å 0.028 0.045 0.031 −0.15 −0.51 −1.0 −1.7 −2.6 −7.6 −660

which would require consideration of mx and my, in ad-
dition to mz. The criterium is thus not adequate to in-
vestigate non-collinear spin configurations. However, we
regard such non-collinear states in homogeneous electron
systems as highly unlikely because, although they cannot
be excluded on the basis of a study of only the mzmz cor-
relation function, they are expected to leave at least some
traces in that function. We have found no such traces (such
as values of R close to −1), at any density.

If a non-collinear spin configuration and/or a first-
order transition should exist in the homogeneous elec-
tron gas, many-body calculations considering only sta-
bility with respect to small fluctuations, and taking into
account only collinear magnetism, are inconclusive.
Clearly, the same applies to the corresponding phenom-
ena in real (inhomogeneous) systems. One method which
is applicable to homogeneous and inhomogeneous systems,
and is capable of handling both non-collinear spin con-
figurations and first-order transitions, is the recently de-
veloped novel density-functional approach to spin-density
waves [6]. Detailed results obtained with this approach
will be reported in a future publication.

6 Summary

Our main conclusions concerning the Fedders and Martin
criterium are summarized at the end of Section 2.1, while
our findings based on the local-field corrected RPA for
three-dimensional, two-dimensional, and layered electron
gases are summarized at the ends of Sections 2.2, 3.2, and
4, respectively. The central result of these investigations is
that there is almost certainly no antiferromagnetic state in
homogeneous electron systems at any density, the caveat
‘almost certainly’ referring to the possibility of first-order

transitions from a metastable state, and non-collinear spin
configurations, which cannot be excluded conclusively.

From the absence of conventional AFM in the
three-dimensional homogeneous electron gas, the two-
dimensional homogeneous electron gas, and thin laterally
homogeneous films, it follows that existence of AFM is
tightly tied to inhomogeneities. As viable mechanisms for
second-order transitions into an AFM state in realistic
systems thus remain only those explicitly related to inho-
mogeneity, such as band structure effects, magnetic impu-
rities, spin-orbit coupling, etc.
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